19 Eylül 2014 Cuma

Data Mining Lecture Notes


Introduction to Data Mining

Pang-Ning Tan, Michigan State University, 
Michael Steinbach, University of Minnesota 

Vipin Kumar, University of Minnesota 


Table of Contents 


Highlights:

  • Provides both theoretical and practical coverage of all data mining topics.
  • Includes extensive number of integrated examples and figures.
  • Offers instructor resources including solutions for exercises and complete set of lecture slides.
  • Assumes only a modest statistics or mathematics background, and no database knowledge is needed.
  • Topics covered include; predictive modeling, association analysis, clustering, anomaly detection, visualization.

Sample Chapters:

These sample chapters are also available at the publisher's Web site.


Resources for Instructors and Students:

Link to PowerPoint Slides

Link to Figures as PowerPoint Slides

Links to Data Mining Software and Data Sets

Suggestions for Term Papers and Projects

Tutorials

Errata


PowerPoint Slides:

1. Introduction (lecture slides: [PPT] [PDF])
2. Data (lecture slides: [PPT][PDF])
3. Exploring Data (lecture slides: [PPT][PDF])
4. Classication: Basic Concepts, Decision Trees, and Model Evaluation (lecture slides: [ PPT][PDF])
5. Classication: Alternative Techniques (lecture slides: [PPT][PDF])
6. Association Analysis: Basic Concepts and Algorithms (lecture slides: [PPT][PDF])
7. Association Analysis: Advanced Concepts (lecture slides: [PPT][PDF])
8. Cluster Analysis: Basic Concepts and Algorithms (lecture slides: [PPT][PDF])
9. Cluster Analysis: Additional Issues and Algorithms (lecture slides: [PPT][PDF])
10. Anomaly Detection (lecture slides: [PPT][PDF])



Book Figures in PowerPoint Slide Format:

1. Introduction (figure slides: [PPT])
2. Data (figure slides: [PPT])
3. Exploring Data (figure slides: [PPT])  
4. Classication: Basic Concepts, Decision Trees, and Model Evaluation (figure slides: [ PPT])
5. Classication: Alternative Techniques (figure slides: [PPT])
6. Association Analysis: Basic Concepts and Algorithms (figure slides: [PPT])
7. Association Analysis: Advanced Concepts (figure slides: [PPT])
8. Cluster Analysis: Basic Concepts and Algorithms (figure slides: [PPT])
9. Cluster Analysis: Additional Issues and Algorithms (figure slides: [PPT])

10. Anomaly Detection (figure slides: [PPT])

Hiç yorum yok:

Yorum Gönder